THE CHAIN RULE

Math 130 - Essentials of Calculus

15 March 2021

Math 130 - Essentials of Calculus

The Chain Rule

15 March 2021 1/5

э

• • • • • • • •

DIFFERENTIATING A COMPOSITION

We've now talked about how to differentiate $f(x) \pm g(x)$, cf(x), f(x)g(x), and $\frac{f(x)}{g(x)}$. We will now add to our list the derivative of f(g(x)).

DIFFERENTIATING A COMPOSITION

We've now talked about how to differentiate $f(x) \pm g(x)$, cf(x), f(x)g(x), and $\frac{f(x)}{g(x)}$. We will now add to our list the derivative of f(g(x)).

THEOREM (THE CHAIN RULE)

If g is differentiable at x and f is differentiable at g(x), then the composite function f(g(x)) is differentiable at x and is given by

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x).$$

医下子 医下

DIFFERENTIATING A COMPOSITION

We've now talked about how to differentiate $f(x) \pm g(x)$, cf(x), f(x)g(x), and $\frac{f(x)}{g(x)}$. We will now add to our list the derivative of f(g(x)).

THEOREM (THE CHAIN RULE)

If g is differentiable at x and f is differentiable at g(x), then the composite function f(g(x)) is differentiable at x and is given by

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x).$$

Using Leibniz notation with y = f(u) and u = g(x), the chain rule becomes

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

EXAMPLE

Differentiate the following functions

• $f(x) = \sqrt{x^2 + 4}$

Math 130 - Essentials of Calculus

3

A D E A B E A B E A B E

EXAMPLE

Differentiate the following functions

1 $f(x) = \sqrt{x^2 + 4}$ **2** $g(x) = \sqrt{4 + 3x}$

Math 130 - Essentials of Calculus

The Chain Rule

イロト イポト イヨト イヨト 3 15 March 2021

3/5

EXAMPLE

Differentiate the following functions

- $f(x) = \sqrt{x^2 + 4}$ $g(x) = \sqrt{4 + 3x}$ $f(t) = e^{x^2}$

3

イロト イボト イヨト イヨト

EXAMPLE

Differentiate the following functions

- $f(x) = \sqrt{x^2 + 4}$
- $(x) = \sqrt{4+3x}$
- 3 $f(t) = e^{x^2}$ 4 $k(x) = e^{\sqrt{x}}$

3

イロト イポト イヨト イヨト

EXAMPLE

Differentiate the following functions

- $f(x) = \sqrt{x^2 + 4}$
- $g(x) = \sqrt{4+3x}$
- 3 $f(t) = e^{x^2}$ 4 $k(x) = e^{\sqrt{x}}$
- $f(z) = \sqrt{e^z}$

3

イロト イポト イヨト イヨト

EXAMPLE

Differentiate the following functions

- $f(x) = \sqrt{x^2 + 4}$
- $(x) = \sqrt{4+3x}$
- **3** $f(t) = e^{x^2}$
- $\bullet k(x) = e^{\sqrt{x}}$
- $f(z) = \sqrt{e^z}$
- $q(x) = (1 + 4x)^5(3 + x x^2)^8$

- 34

イロト イボト イヨト イヨト

EXAMPLE

Differentiate the following functions

- $f(x) = \sqrt{x^2 + 4}$
- $(x) = \sqrt{4+3x}$
- **3** $f(t) = e^{x^2}$
- $\bullet k(x) = e^{\sqrt{x}}$
- $f(z) = \sqrt{e^z}$
- $q(x) = (1 + 4x)^5(3 + x x^2)^8$

3
$$f(x) = \sqrt[4]{1+2x+x^3}$$

- 34

イロト イボト イヨト イヨト

EXAMPLE

Differentiate the following functions

- $f(x) = \sqrt{x^2 + 4}$
- $(x) = \sqrt{4+3x}$
- **3** $f(t) = e^{x^2}$
- $\bullet k(x) = e^{\sqrt{x}}$
- $f(z) = \sqrt{e^z}$
- $q(x) = (1 + 4x)^5(3 + x x^2)^8$

• $f(x) = \sqrt[4]{1 + 2x + x^3}$ • $g(x) = (2x^4 - 8x^2)^7$

イロト 不得 トイヨト イヨト 一日

EXAMPLE

Differentiate the following functions

- $f(x) = \sqrt{x^2 + 4}$
- $(x) = \sqrt{4+3x}$
- **3** $f(t) = e^{x^2}$
- $\bullet k(x) = e^{\sqrt{x}}$
- $f(z) = \sqrt{e^z}$
- $q(x) = (1 + 4x)^5(3 + x x^2)^8$

f(x) = ⁴√1 + 2x + x³
g(x) = (2x⁴ - 8x²)⁷
y(t) = ¹/_{(t⁴ + 1)³}

イロト 不得 トイヨト イヨト 一日

EXAMPLE

Differentiate the following functions

- $f(x) = \sqrt{x^2 + 4}$
- $(x) = \sqrt{4+3x}$
- **3** $f(t) = e^{x^2}$
- $\bullet k(x) = e^{\sqrt{x}}$
- $f(z) = \sqrt{e^z}$
- $q(x) = (1 + 4x)^5(3 + x x^2)^8$

• $f(x) = \sqrt[4]{1 + 2x + x^3}$ • $g(x) = (2x^4 - 8x^2)^7$ • $y(t) = \frac{1}{(t^4 + 1)^3}$ • $k(x) = e^{\sqrt{t^2 + 2}}$

イロト 不得 トイヨト イヨト 一日

EXAMPLE

Differentiate the following functions

$f(x) = \sqrt{x^2 + 4}$	• $f(x) = \sqrt[4]{1 + 2x + x^3}$
$g(x) = \sqrt{4 + 3x}$	8 $g(x) = (2x^4 - 8x^2)^7$
$f(t) = e^{x^2}$	• $y(t) = \frac{1}{(t^4 + 1)^3}$
• $k(x) = e^{\sqrt{x}}$	$(t^{2}+1)^{2}$
$f(z) = \sqrt{e^z}$	$ k(x) = e^{\sqrt{r} + 2} $
9 $q(x) = (1 + 4x)^5(3 + x - x^2)^8$	

3

• • = • •

DIFFERENTIATING AN EXPONENTIAL FUNCTION

We know that the derivative of e^x is just e^x , but what about the derivative of the more generic exponential function: b^x , where b > 0, $b \neq 1$?

K A TE K A TE K

DIFFERENTIATING AN EXPONENTIAL FUNCTION

We know that the derivative of e^x is just e^x , but what about the derivative of the more generic exponential function: b^x , where b > 0, $b \neq 1$? Recall the property of logarithms that says

$$\ln(e^x)=x.$$

Using this, we can rewrite $b = \ln(e^b)$ so that

$$b^x = (e^{\ln(b)})^x = e^{x \ln b}.$$

DIFFERENTIATING AN EXPONENTIAL FUNCTION

We know that the derivative of e^x is just e^x , but what about the derivative of the more generic exponential function: b^x , where b > 0, $b \neq 1$? Recall the property of logarithms that says

$$\ln(e^{x})=x.$$

Using this, we can rewrite $b = \ln(e^b)$ so that

$$b^x = (e^{\ln(b)})^x = e^{x \ln b}.$$

Then, using the chain rule, we find that

$$\frac{d}{dx}[b^x] = \frac{d}{dx}[e^{x\ln b}] = e^{x\ln b}\ln b = b^x\ln b.$$

EXAMPLE

Find the derivative of the following functions

a
$$f(x) = 10^x$$
 a $g(t) = 2^{3t}$

Math 130 - Essentials of Calculus

THE CHAIN RULE WITH A TABLE

EXAMPLE

Here is a table of values for f, g, f', and g'.

x	f(x)	g(x)	<i>f'(x)</i>	g'(x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

Find the following values

• If h(x) = f(g(x)), find h'(1).

The Chain Rule with a Table

EXAMPLE

Here is a table of values for f, g, f', and g'.

x	f(x)	g(x)	<i>f'(x)</i>	g'(x)
1	3	2	4	6
2	1	8	5	7
3	7	2	7	9

Find the following values

- If h(x) = f(g(x)), find h'(1).
- 2 If H(x) = g(f(x)), find H'(1).
- **3** If F(x) = f(f(x)), find F'(2).
- If G(x) = g(g(x)), find G'(3).